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PREFACE 

Slender re-entry vehicles at high altitude and high velocity pos- 

sess a flow field which results from the interaction between the boundary 

layer formed near the surface and the shock wave originating from the 

leading edge or tip.  This Memorandum studies the analytical conditionf. 

necessary for the solution of a set of simplified equations which describe 

the interaction flow field. Surface mass transfer, which occurs in the 

case of an ablating vehicle, is also considered. The results of this 

Memorandum wil!. be useful in the interpretation of experimental data 

and the implementation of numerical analyses. The Memorandum is ^art 

of a continuing study for the Advanced Research Projects Agency in re- 

entry aerodynamics. 

One of the authors, T. Y. Li, is a professor in the Department of 

Aeronautical and Astrorautical Engineering, Ohio State University, 

Columbus, Ohio, and consultant to The RAUD Corporation. 

• 
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ABSTRACT 

An analytical formulatton of the problem of hypersonic viscous 

interaction on a very slender body of revolution with a thick boundary 

layer and mass transfer is attempted. Particular attention is directed 

to the establishment of the mathematical restrictions necessary to ensure 

the existence of similar solutions of the laminar boundary layer equa- 

tions for this class of problems.  Yasuhara's analysis is extended to 

include surface mass transfer and binary mixture effects, and it is 

shown that similar solutions are possible only for three-quarter-power- 

law bodies of revolution. With regard to the problem of hypersonic 

vis ous interaction on a slender body of revolution with a thick boundary 

layer and surface mass transfer, it is shown that the criterion for 

the existence of similar solutions is that r v x2 must govern the body 

surface shape and the surface injection velocity. 

I 
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SYMBOLS 

* 
a 

* 
a 

■ constant defined In Eq. (72) 

A" » constant defined in Eq. (77) 

■ constant defined in Eqs. (86) and (133) 

, » constant defined in Eqs. (118) and (134) 

B = constant defined in Eq. (81) 

b = dimensional constant defined in Eq. (96) 

C.  ■ concentration 

C = specific heat at constant pressure 

c = constant defined in Eq. (119) 

D = constant of integration defined in Eq. (127) 

D,- = diffusion coefficient 

d a constant defined in Eq. (120) 

C = dimensionless enthalpy - H/He 

H = total enthalpy 

h = specific enthalpy 

I " constant defined by definite integral given in Eq. (136) 

j = effective number of degrees of freedom 

K' = dimensionless velocity in x-direction = u/u 

k ■ thermal conductivity 

L = characteristic dimension 

Le a Lewis number 

M » Mach number 

m ■ constant exponent defined in Eq. (96) 

m. « molecular weight 

Pr ■ Prandtl number 

p = pressure 

R * universal gas constant 

R = mixture gas constant 

r ■ radial distance 

Sc = Schmidt number 
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* 
3 

U 

V 

}: 

similarity coordinate defined in Eq. (12) 

similarity coordinate defined in Eq. (10) 

similarity coordinate defined in Eq. (14) 

flow velocity component in x-direction 

flow velocity component in y-airection 

coordinates as shown in Fig. 1 

i 

e 

'i 

'k 

w 

00 

a 

0 

Ye 

6 

* 
6 

e 

\ 
* 

e 
o 

x 

P 

♦ 

■ dimensionless concentration C./C. 
1  LW 

■ edge of the boundary layer 

» i  component 

■ generalised coordinate 

■ wall 

■ undisturbed stream 

■ angle defined in Fig. 1 

- pressure gradient parameter defined in Eq. (33) 

■ specific heat ratio C /C 
P v 

■ boundary layer thickness 

■ displacement thickness of boundary layer 

■ hypersonic parameter defined in Eq. (71) 

■ dimensionless similarity coordinate defined in Eq. (13) 

= dimensionless similarity coordinate defined in Eq. (11) 

■ dimensional similarity coordinate defined in Eq. (15) 

■ constant defined in Eq. (72) 

■ function defined in Eq. (24) 

■ viscosity 

■ density 

■ stream function 

« parameter defined in Eq. (143) 

. 



I. INTRODUCTION 

The purpose of this Meracrandum is to present an analytical formu- 

lation of the problem of hypersonic viscous interaction on a very slen- 

der body of revolution with a thick boundary layer and surface mass 

transfer. Particular attention is directed to establishing the mathe- 

matical restrictions necessary to ensure the existence of slt-ilar so- 

lutions of the laminar boundary layer equations for this class of prob- 

lems. The determination of similarity conditions is important because 

similar solutions are amenable Co comparatively simple analysis   and 

find diverse application through the use of the local similarity con- 
(2) 

cept. Recently, Yasuhara   demonstrated chat similar solutions can 

be determined for a slender, three-quarter-power-law body of revolu- 

tion when the boundary layer thickness is of the same order aa the body 

radius. In this Memorandum we extend Yasuhara's analysis to include 

surface mass transfer and binary mixture effects, and show that in the 

extended case similar solutions are possible only for three-quarter- 

power-lav- bodies of revolution. It is further shown that these simi- 

lar solutions are characterized by the restrictive condition that 

r /r = constant.  This requirement for similar solutions is particu- 

larly pertinent in the regime where r /r « 0(1) or y /r    *   0(1). 

The equations which describe the boundary-layer growth on a body 
2 2 

of revolution contain the transverse curvature expression (r /r ). 

For similar solutions to exist, this expression must be a function of 

the similarity variable T\.    Particular attention is directed to the 
2 2 

regime where r /r « 1 or y /r »1. We derive a new system of equa- 

tions that possesses the same analytical features as the equations 

studied previously by Stewartson,   Glauert-Lighthill,   and Mark. 

The possibility that this new system has similar solutions is then ex- 

amined under appropriate boundary conditions, including the injection 

of gas at the body surface. The results indicate that similar solu- 

tions characterized by prv-similarity in the boundary layer can be ob- 

tained. Finally, with regard to the problem of hypersonic interaction 

* 
See List of Symbols 
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on a very slender body of revolution with a thick boundary layer and 

surface mass tvranofer, it is shown that the criterion for the exist- 
1/2 

ence of similar solutions is Chat r v ~ x   must govern the body sur- 
w w 

face sh.ipe and the t  rface injection velocity. 



II. CLASSIFICATION OF FLOW REGIMES 

Viscous flow regimes may be usefully classified with respect to 

the ratio of the characteristic body radius to the thickness of the 

boundary layer. Three such regimes described below, may be distin- 

guished for the purposes of our problem. 

THE M REGIME 

This regime comprises cases in which y /r = 0(e) where e « 1. 

Here, Mangier'& transformation '     permits a reduction of axi- 

symmetrij flow boundary layer equations to two-dimensional boundary 

layer equations. Transverse curvature effects are, of course, unim- 

portant in this regime. 

THE P-E-Y REGIME 

This regime comprises cases in which " /r =« 0(1) or r /r « 0(1). 
' e w e w 

The appropriate compressible boundary layer equations with mass trans- 

fer are considered by Yasuhara^ ' and Probstein and EllioCt,   who 

show the importance of the effect of transverse curvature in this re- 

gime. 

THE G-L REGIME 

In this regime ehe boundary layer thickness is large compared with 

the radius of the hody  of revolution; that is, y /r » 1, Using the 

criterion stated above, we can characterize this regime by (jr /re) = 

0(e), where e « 1. Stewartson^ and Glauert an'' Lj.ghthill^deait 

with incompressible flow problems in this regime. Mark   and Steiger 
(8) 

and Bloom   also considered certain ci i'ses of compressible boundary 

layer flows in this regime. Their results demonstrated the extreme 

importance of transverse curvature effects. The boundary layer equa- 

tions for the G-L regime possess a baste structure which leads to a 

logarithmic velocity profile distribution near the body surface in 

the case of zero mass transfer. 
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III.     BINARY BOUNDARY LAYER EQUATIONS AND BOUNDARY CONDITIONS 

The no-slip condition must apply at the body surface.    This re- 

quires the use of the boundary layer equations in the region adjacent 

to the body surface.    A gas is injected normal to the surface such that 

a binary boundary layer flow results.    The binary boundary layer equa- 

tions for axisyroroetric flow may be written: 

|^ (pur) +|^ (pvr)    =    0 (1) 

„cHij^äu^        öpj.19^      5u\ ,„,. pu U + pv ä? "  - ^ + 7 ^ l"1 ä? i (2) 

OH . „   OH       i s   r   ^   SHI ^ i ö   r     (,     l \d   (a \] ■^- +  pv -r- 
ox 3y 

^ I [- ^ (' ~h) I h ^] 

puör+pvär a 7MrpDi2är) (5) 

where 

C   = specific heat at constant pressuie of the i  component 

C  = Z C.C 
P    ,  i p. 

i   ri 

C, = mass fraction of i  component 

D,  - binary diffusion coefficient 

2 
H ■ total enthalpy = h + (l/2)u 

b =- E nh. 
1 i 

i 



h     =    enthalpy ^f the i      component 

k    =    thermal conductivity of  the fluid 

Le    =    Lewis number, p D,- C /k 
12    p 

Fr    -i    Prandcl number,  |i C  /k 

p    »    fluid pressure 

r    =    r    + y crs a 

rw    =    rv/X^  de^ineS the shape of the  body surface 

Sc    =    Schmtdt number, M-/P D.- 

u,v = flow velocities in the x,y diref-.ions,  respectively 

x,y = coordinates,  as shown in Fig.   1 

p. = viscosity coefficient of th'i fluid 

p ■ fluid density 

Within the boundaty layer we have,  from Eq.   (3), 

Pe(x)    =    RpT (6) 

where 

Z C.R.    -   E G    ~ (7) 

m. = molecular weight of i-gas 

R = universal gas constant 

Ri = component gas constant 

R = mixture gas constant 

The boundary conditions at  the wall are characterized by Che no- 

slip  condition, constant wall temperature,  the coucentration of the in- 

jectant gas, and the Eckert condition,  which  specifies  that  the normal 

mass  flow velocity of the main component  (i  - 2)  in the gas mixture 

vanishes at the body surface.     ' 



when y ■ 0;      u <• 0 (8a) 

Cj - C,  -    constant (8b) 

h ■ H  ■ constant (8c) 
w 

(pv)w = . .*_ Di2 (_1) 

2w - ^ "w 
(8d) 

u u 
e 

cl 
m 0 

H = H 
e 

At the edge of the boundary layer, the properties of the flow must 

match those given in the inviscid flow. 

when y - 6, u = u^ (9a) 

(9b) 

(9c) 

TRANSFORMATION OF BINARY BOUNDARY LAYER EQUATIONS 

We shall introduce, a coordinate transformation to translorm, under 

certain prescribed conditions, the partial differential equations de- 

scribing the axially symmetric laminar boundary layer into a set of 

nonlinear coupled ordinary differential equations.  The transformation 

is quite general so that it can be applied to all the regimea described 

above.  The boundary layer coordinates ixyy) are  transformed into the 

similarity coordinates (s, »Tl) as follows: 

s. =■■     I Cp u H r, dx (10) 
k    J.  e e e k 

PeUe ?  p \ = ^r Mrr dy (11) 
*    /2s -'o p 

e 
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where C = the Chapraan-Rubetin constant 

r. » characteristic dimension 

The transformation can be applied to the P-E-Y and the G-L regimes as 
follows: 

In the P-E-Y regime, r - r , thus 
|C    w 

•J/ 
Cp u u r dx 

e e e w (12) 

^^■^KV" r^ (13) 

In the G-L regime, r, ■ r , thus 
K    6 

Cp p. u r^ »k   -   3    -   JoCPeVer;dx (14) 

PeU le   f 
2s "0 ^e 

r dy (15) 

We shall discuss latov these forms of the transformation and their sig- 

nificance.  Their immediate application is to the boundary layer equa- 

tions which can now be rewritten in the new variables (s^T), ). The 

stream function t is defined by: ■vv 

hi 
Si    -    "Pvr (16) 

öy Pur 
(17) 

We consider those flows where u, H, and C.. 
. are expressed e.s  follows: 

Si - K/(\ .sk) (18) 



I-    "    G(Tlk   ,sk) (19) 
e 

Ci 
C~    a    h<>\  >\) (20) 

iw 

where the prime denotes  5/3^.     Equations  (2).   (4).  and (5) may now be 
written: 

/     r \ 2s.    du      ,     „       D   s 

^      v2 / U ds.     \ n    ; 

2 s. du 
 k  t 

_.         -                          u ds, 
rk                  e k 

k k 

Xr 6 r.. 

+ 2sk[K/lf--i:G'] (22) 
'k   "Dk 

rk 

,02 

k ^ k 

where 

X    "    C  pT" (24) 
e e 
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In the new coordinate system, the boundary condi 
follows: 

y conditions are expressed as 

when •'I  = o 
K'(0)  = 0 

Z^O)  -  1 

(25) 

(26a) 

H 
0(0)   . j* 

e (26b) 

2S, f- (0) ♦ K(0) . (ij) r-^. 2 ,(0)(!.) 
w     Iw 

(27) 

when 71,  « TI K^y   =   i 
(28) 

zi<\) - o (29a) 

G(\)     »  1 
e (29b) 

■ 
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IV.  SIMLIAR SOLUTIONS OF THE HYPERSONIC. BINARY AXISYMMETRIC 
BOUNDARY LAYER 

2 
By neglecting terms of order (1/M ) in a hypersonic boundary layer, 

we obtain the following expressions from Eqs* (18) and (19). 

/ „  p v 2s. d\i y    - I _ 

(K/ - r) ^ dT ■ -V- evw (G -K >      (30> e        k e 

where 

2 

jp   -    2 (31) 
e 

Clw^Y^   "    F2(V3k)(G-K'2) (32) 

d in p 

k 

Fl(\'8k>    * 

i + ciw Gf - ^w 
X + 2    m " — 

iw  \j„ + 2    m1 '    V k    k 

(34) 

/Ji  + 2    ra. 
Clw 

(ill- -1   ^ 
Vj2 + 2    m1  "  V 

F2(\'sk) irmz  (35) 

i + ciw(i7Ti ir-Ovvv VJ2 " - "l 

The   lowing relationships were used in the derivation of Eqs. (34) 

and (35): 
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SC.R ^- -    Ho       ,    ri    \ 
(36) 

j, +2 
}P1 ■ -VRi (37) 

The j. is defined as the effective number of degrees of freedom of the 

it" component.    In this study, j ■» 5 for diatomic gases and j ■ 3 

for monatomic gases.  Substitution of Eqs. (30) to (35) into Eqs. (21) 
to (23) gives: 

H*')' + KK r// Ye-1 

f2. —  ßFl(\'sk)(G - K^) 

*^-\* (38) 

fex^G') +KG' = 2^4(57-0^" 

+ 2sk[K,lr-irG/] k  "ak 

. T r2 1 A    N 9  T' + LX T i^ fe " V F2(\'sk)(G - K'2)Zl'_ 

(x4fezi')/+^ 'kids. OS.  1. 

(39) 

(40) 

For the problem of hypersonic viscous flow past a very slender body of 

revolution with injection of coolant gas at the suriace, these equations 
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can be treaten under ehe boundary conditions given in Eqs. (25) to 

(29). 

If similar solutions are to be obtained, the following conditions 

must be satisfied: 

(a) K - Kloy 

G - ccy 

zi" w 

Hence, Eqs. (38) to (40) become: 

[X ^ K")7 + KK"    =    ^-li Ifc^KG . K'2) (38a) 
rk e 

^X4G')
/
+KG' - 2[x4fe-iV'] 

'k \ 

,     .2 
4- -X ^2 fc fe "  OW«5 " K,2)2l]    (39a) 

rk 

(>4fe*i')'+Kzi'= o ^ 
rk 

These equations are to be solved under the boundary conditions given 

in Eqs. (25) to (29), whence Eq. (27) becomes 

^ " (k) T^-'Htt ("a) 'V2 

•w *  -lw '  V 
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(b) X - X(T1.) ,,1) 

Sc = Sc(Tlk) (42) 

Pr ' Pr(\) (43) 

2,  2 
sc <.ui. vaiuie parameter r 

Tlk; that is, 

(c) The transverse curvature parameter r2/^ must be a function of 

~2 " W (44) 
rk 

(d) The pressure gradient parameter, as defined in Eq. (33), must be 

constant: 

d in p 
e - 2inrt (45) 

k 

(e)    The surface boundary conditions are defined such that C,   ,  H /H  , 

and (r /r, )    are constants. ^ w    k' 

THE ANALYTIC CHARACTERISTICS OF THE G-L EQUATIONS 

(4) 
Glauert and Lighthill        studied the problem of the incompressible 

axisyrametric boundary layer of a  long cylinder.     Their primary purpose 

was  to examine a very thick boundary layer on i slender body;   that is, 

where r  /r    » 1.    In our notation,   their equation for  the boundary 
layer  flow is 

[TlV]' + jKK"    =    0 (46) 

Suppression of the pressure gradient term in Eq. (38a) and taking 

X = 1 gives 
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.(r) K"] +KK/' (47) 

2 ic     le For incctnpressible flow,  it will be shown later thai- (r/r )    = T] /T] . 
Hence, Eq.   (47) can be written 

r * ' 

\ K"      + KK"    -    0 (48) 

The similarity between Lqs. (46) and (48) demonstrates that the system 

of equations presented here is entirely consistent with the dauert 

and Lighthill equation. 

SIMILARITY CONDITIONS FOR THE NQRJWVL VELOCIi.'Y 

In seeking similar solutions for problems relating to mass trans- 

fer in the boundary layer, it is essential to ensure that the normal 

velocity at the surface, which governs the axial rate of mass transfer, 

is a function of the similarity variable only. This can be shown by 

first combining Eqs. (11) and (17): 

u - u -=L-U- (49) 

Combining Eqs. (18) and (49) gives, in the case of similar solutions, 

* = 72^ K(71k) (50) 

From Eq. (16), one obtains 

-pvr - y^—K' + K^^) (51) 

- 
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Now 

5 
3x 

Inversion of Eq. (11) gives 

3y   ask hx 

y   - 
28k A Pe

r
k 

peVk J0      P 

which by differentiation, yields 

Combining Eqs. (52) and (54) yields 

5 
ax 

02) 

(53) 

dT)    (54) 

1 Ss. ,     2s \ 

This result is substituted into Eq. (51) to yield 

-^Xr  = K + rr__^_ ^Vy     A Perk 

/5rk -dx 

From Eqs. (30) and (33), we obtain, respectively 

2 s,   du 
k      e ß 

u      ds, 
Y M2 e        k 
e e 

(57) 
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f    =    ^-M^  (G-K'2) + K'2 (58, 

Heuoe,  Eq.   (56)  can be written 

2s 

^ ■ ^ -11 - TVT äf," <w>?} r r3 (\- r)K' <"> 1   3 v        "e^e'k uok 
TTsT ax k 

where 

kr    .o       V.  -  1    .. .,     ,    „ 
f      rK/2+-^-M2F,(o  -K'2)1^ r. N Jn    L 2        e   . J r 

F3^- r) - :  v -1 z <M> 
K'2 +    ' -      A.Q  - K'2i Z        el 

2 
In hypersonic boundary layer"-   the terms of 0(1/M )  ars neglected,  and 

Eqs.   (59) and (60)  reduce to 

■ -fir = *-{'- 7v*r s- <VeV; T: ^(\- r)K' <'» 1     k e e k      k k 
TTsf 3x 

where 

A 
[     FAG - K/2) — d^ 

F4V\' 7^.     *   -;: —^  (62) 
F^G  - K") 

It should be pointed out that the right-band side of Eq. (61) is 

a function of T] only, provided that 

(a) f" = f(\) (63) 
rk      K 
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(b) 

W^Wk) const. (64) 

Now condition (b) can be written as follows: 

u i, „„, 
e e k  k 

where 

-A. 
YM2 
e e 

1 + 
Pe ^k 

ae äsk 

Ük!!k 
3 9sk 

Ue äsk J 

(65) 

g 
VM2 
e e 

2s, du 
 k  e 
u df 
e   k 

as defined in Eq. (57). In the hypersonic adiabatic free stream, the 

total enthalpy is constant so that dh + u du =0. Indeed, in the 

hypersonic boundary layer, 6 « 6 so that very little mass flows into 

the boundary layer. Hence, the specific entropy is constant along the 

edge of the boundary layer and it follows that 

— dp + u du (66) 

./hich  leads to 

Ue dPe        2 
pr^r+Me e      e 

(67) 

and 
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Pe Ö8k „2 

l__e 
u    äs 

=    - M' (68) 
du e 

We therefore have 

2sl-  3               B      2   2sk Örk 
 ^-^-(pur,) = Er(l-M/)+ ——       (69) 
PeUe

rk ö\ ' «« k'     Y M
2     e   rk ÖSk 

e e 

This shows that 

Ük!!k 
rk ask 

- const. (70) 

is sufficient for condition (b); this is a geometrical constraint on 

the problem. 

BOUNDARY LAYER EFFECTS ON THE MATCHIMG CONDITIONS BETWEEN INVISCID ^D 
VISCOUS FLOW REGIONS 
« 

The axis of symmetry of the body lies along the direction of the 

undisturbed free stream. At the body surface, a particular rate uf 

mass transfer due to coolant gas injection is specified. The disturbed 

flow region surrounding the body is separated from the undisturbed flow 

by the leading-edge shock wave.  The region between the shock wave and 

the body surface can be divided into an inviscid flow region and a vis- 

cous boundary layer region. We shall match the normal velocity and the 

pressure on the common boundary of these inviscid and viscous flow re- 

gions. 

Stewartson    and Oguchi    have obtained similar solutions of 

the hypersonic inviscid flow region using the small-perturbation theory. 

These results can be summarized in the following equations for the nor- 

mal velocity and pressure in the flow field: 
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V / xll-l 
e 

u 
CO 

neeo (f) ' (71) 

Y Y 
n 2n-l     o   v    1  e     i    e    1/  1\ 
e '■» n zrh itrd f (A" »)  d-r '    ("> 2 2 

Y M e pm Y + 1 

where A, N, and 9 are constants. These values v and p will bo 
o e     e 

matched with the corresponding viscous flow solution at the edge of 

the boundary layer. These matching conditions will determine n and e 

in Eqs. (71) and (72). 

The value of v /u can be obtained from the boundary layer analy- 

sis by evaluating Eq. (56) at y = 6. This result has also been obtained 

by the authors usii^ a direct integration of the continuity equation, 

and gives, for hypersonic boundary layers. 

v p v r . * 
_e m    _w_w_w d6_ 
u p u r dx                   ^/J; 
e e e e 
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V, SIMILAR SOLUTIONS IN THE P-E-Y REGIME 

We note that lu «-he P-E-Y regime, r. = r and (sk>\) become 

(s,Tl), as defined in Eqs. (12) and (H). The conditions for similar 

solutions in this regime are: 

(a) m) (74a) 

Sc = Sc(Tl) (74b) 

Pr = Pr(Tl) (74c) 

2 2 
(b) The transverse curvature parameter r /r must be a function of T]: 

w 

T - V7» (75) 

w 

(c) The pressure gradient parameter as defined in Eq. (33) must be 

constant: 

d in p  Ij 
d in s 

(76) 

(d) The surface boundary conditions are defined such that C,    and 

H /H    are constant.    This requires uniform distribution of the we 
wall  temperature and the concentration of the injectant gas. 

(e) The boundary layer effects given in Eq.   (73) must be included in 

the matching condition. 

The above condition (c)  implies that 

ß/2 * s =    A p (77) 

where A is a dimensional constant. From Eq. (12), one obtains 
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s -» L fe r perwd- (78) 

In the hypersonic flow regime, u ^ u . In Eq. (78), X can be treated 

as a constant evaluated at some reference temperature and composition, 

^ " ^m« To the same approxii ation, then. 

RT    ^RT'' 
const. 

m 
(79) 

and hence 

s = B 
f        2 
J. Perw dx (80) 

where 

= (RTX) 
u
a 

const. (81) 

Combining Eqs. (77) and (80) yields 

r p r dx 
e w 

2/ß 
iii 

2/P 

const. (82) 

Consider now condition (b), which requires that r2/r.2 be a func- 

tion of Tl only. From geometry 
w 

(r)2 1 + 2 cos 

w 

a py 
r dy 

r    "0 
w 

(83) 

or 
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.2 
(L.J    ,    ! + (2 cos a) £ä 

w pur "0 e e w 

n p 

p 
— dT] (84) 

Equations  (58),   (80),  and (84)   together give 

W    = ! + (^/Z ue cos a)   [^ y    ) a    J    F^G - K'Z)  dT)      (85) 

2 * 
where terms of 0(1/M ) have been neglected, cos a =■ 1, and a is de- 

fined as 

^   2   1/2 

I"  p r dx"! 

a* - l'" e"2 J (86) 
P r e w 

* 2,2 Now a    must be a constant in order that  r  /r    be a function of Tl only. w J 

Consider finally the matching condition.     From Eqs.   (71)  and (73), 

we have 

/ vn-1 /P v r . *s       dr 
nee (f)      =   UUUL + %>-) + ^L (87) 

o\L/ \p u r dx  /      dx 
e e e 

/"Effective body"N  /viscous  effects^ /local  inviscid'N 
^ angle /  V)n body surface/  N    body angle    / 

In matching  the viscous and inviscid solutions, we have included the 

boundary  layer effects.     Since 

r      =    r    + 6 cos a (88) e w 

rw + 5* (89) 
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Equation (87) may be written 

nee (7) AL/ 

p v r        dr 
www,       e 
Pur        dx 

& e e 
(90) 

Since,  by Kq.   (51), 

p v r 
w w w 
pur 

e e e 

u K(0)       ,     A     /      s 

Y M2    Pcre dx V      ^ 
e e 

(91) 

we may write 

p v r 
www 
pur 

e e e 

1 r^: !k /- KL01 
,/2p"u      „2 /P«       *      p r    V B 
V    00 00   M a e e 

e 

(92) 

where B    = (pui/RTX)   .    The final expression for  tlie matching condition 

is  therefore 

■^(T1 - -/ 
0 ^—«   

PI      M /T    „,„,       /B dr 
2p u 2        *    p r      V B dx K     ' 

CD co   M a        e e 
e 

Similar solutions in the P E-Y regime must satisfy the conditions 

given in Eqs. (82), (86), and (93).  Equation (72) can be rewritten 

p  = dx' 
e 

Kn-l) (94) 

d = 

2nil     v 

(2) n  n2 ^r^- 

1  Ve 

Y + 1  e e 
(f^)  f(*S")   ■-2(1-n)^2p. (95) 
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Let 

r      =    bx w 
m 

(96) 

where b is a dimensional constant.    From Eqs.   (82),   (86),  and (93), 

one obtains 

1 + 2m + 1 
3 

2(n - 1) 0 

n -t - m = 3 
2 

^97) 

(98) 

n    =    ra (99) 

These equations yielu n = m = 3/4,   ß = -1/2.     Equations  (38a),   (39a), 

and (40a) may now be written 

2 ' 
(\ ^ K")   + KK"    = 

w 

Y^  "   1 0 

e 
(100) 

2   /, 
(~X^G')    +KG'    =    2 [X i_ (i- .   ,) KK"] (101) 

w w 

b^rAb-^-^H] 

(l4fezi') +KZi' ■ 
w 

The boundary conditions for this set are: 

(102) 
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71    "    0; K'(Ü)    =    0 

z^o)    =    1 

(103a) 

(i03b) 

G(0)     = w 
(103c) 

K(0) " h    5^ziA<0> (103d) 

^   "   \:   K'(TI )   =   i 

W   =   o 

(104a) 

(104b) 

G(y    =    1 (104c) 

The geometrical constraint for siinilarir.y given by Eq. (70) will 

now be examined for this regime. Equation (80) reduces to 

l     ös 
s 9x 

2 
P r te  w 

e w | P_r.. dx 
0 

(105) 

By Eqs. (94) and (96), we obtain 

or 1  w 
r dx w s 
j. ds r 
s dx 

i 

or 

ös 
in 

2(n - 1) + 2m + 1 = ConSt-  (106) 

Thus the condition of similarity is satisfied.  The foregoing arguments 

show that similar solutions exist for the case of a slender body of 

revolution in hypersonic flow with surface mass transfer. The shape 

of the body mut.t be 



-26- 

r  ■ bx 
w 

3/4 
(107) 

For zerc mass transfer, the result confirms the conclusions reached by 
(2) 

Yarjuharar ' 
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VI.     SIMILAR SOLUTIONS IN THE G-L REGIME 

In the G-L regime,  r,   » r    and (s. ,Tl )  io  transformed into 
*   * k        e k   'k 

(s ,T| ), as shown in Eqs.   (14) and (15).    The conditions tor similar- 

ity in this regime are: 

(a) X    -    \(T1*) (108a) 

Sc    -    Sc(Tl ) (108b) 

Pr    =    Pr(Tl*) (108c) 

2 2 * 
(b) The transverse curvature parameter r /r must be a function of Tl : 

e ' 

2 

^2 * ^  ) (109) 

r 
e 

(c) The pressure gradient parameter as defined in Eq. (33) must be 

constant: 

d £n p 

* 0 = 2  -| (110) 
d Xn s 

(d)    The viscous  term given in Eq.   (73) must be included in the niatch- 

ing condition: 

v p v r * e _      www d5 
u p u r dx                                         U:i) 

e e e e 

(e) The surface boundary conditions are defined such that C, and 
Iw 

H /H are constant, 
w e 

(f) The boundary condition [Eq. (27a)] relating to the mass transfer 

at the surface must be compatible with the requirements for a sim- 

ilar solution. 
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w lw e 

Condition (c)  implies that 

(sV/2    -    A*pe (112) 

* 
where A, is a dimensional constant. Equations (14), (81), and (112) 

give 

J0 
Pere X    (Aj^/ 
 2^3  =     = const. (113) 

Pe 

which is similar to fq. (82) for the P-E-Y regime. 

Condition (b) requires that the transverse curvature parameter 
2 2 * 

r /r must be a function of T| . Since this study concerns a slender 

body of revolution, an approximation is made by assuming that the x- 

axis an'1, the axis, of symmetry are coincident; that is, cos a =* 1. 

Equation (15) then yields 

^J- -^ dTl* = r dy ^ r dr (114) 
e e 

It follows that 

2 JCT        i       i-71    Pe      * r   = 2^s   rr     T'^ <114a> Pe e    J0    p 

* 

2 /T*      i     r e P£    * re a 2Äs rt J0 r
dT1 (114b) 

e e      C 
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where T) denotes the boundary layer thickness in the T| variable. 

These equations show that, in the G-L regime, 

(r) - 
\* 

Pc * 
Jo P 

dl) 
* 

"0 

Pe 
P 

df 

(115) 

Combining Eqs.   (58)  and  (115)  gives 

Jl 

(r)2' 
F.^   - K'2)   dT* 

J       F^G - K'Z)   dTl 

(116) 

where terms of 0(1/M ) are neglected. Equation (116) shows that 
2 ^    * 

(-'r ) is a function of T) within the present approximation. Indeed, 

r/r 2= y/6> so that r/r is a proper similarity variable in the physi- 

cal coordinate of the boundary layer. 

For this regime, the matching condition in Eq. (87) is 

neS o(!) 

u B 
g» e 

2p u B 
OD 00 a*  V P r e e 

dr 
 e 
dx (117) 

where 

LC *A "] 
1/2 

P r 
e e 

= constant (118) 
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Therefore, similar solutions in the G-L regime must satisfy the 

conditions in Eqs. (113), (117), and (118).  Next we assume that 

m = c: 
e 

r- ■ ex (ng) 

pe » dx2^'^ (120) 

and determine that m - n « 3/4, ß » - 1/2.  The boundary layer equa- 

tions may be rewritten as: 

(^40   +KK"    =    ^LiFi(K/2.G) 
re e 

(^VO^KG'    -    Z^liQ--!)^]' 

2 ' 
+ [x£2fc&-1}F2(G-K/2)Zl]        <122> r 

(x4fc2i')+^ -" r 
e 

(123) 

The boundary conditions are 

■n  = 0    K^O) = 0 (124a) 

VC) = 1 (124b) 

H 
G<0) " f (124c) 

e 

K<0' - (k) sf zi'<°> if) (i24d, 
2w        e 



-31- 

and 

* * 
71      '    ^e RA'le)    -    1 (125a) 

(12.Sb) 

(125c) 

K'Ol*) 

Zl<<) 

G(V 

Condition (f)  requires  that 

(f) ■ const. (126) 

Treatment of the geometrical constraint given by L.^ (70) gives 

the same result for the G-L regime that was shown previously in Eq. 

(106). In the G-L regime, therefore, "exact" similar solutions are 

3/4 obtainable only for the case where r ~ x  .  For very slender bodies, 
2 w 

the condition (r /r ) =0 should be considered.  This suggests an in- 

consistency, since K(0) e 0 for finite Z'(0).  To alleviate this diffi- 

culty the present authors, in Ref. 18, adopt the following condition: 

K(0)  . ^ D 
2w 

where D is a finite and negative constant.  When this alternative con- 

dition can be accepted, it replaces Eq. (124d) thus making then pos- 

sible "approximate" similar solutions of the G-L regime.  Within this 

approximation, it may be observed that 

re~*-3/4 (128) 

pe  x (129) 
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in the hypersonic viscous interaction solutions of the G-L regime. 

This approximate result is completely analogous to the strong inter- 

action solution on a hypersonic flat plate with surface mass trans- 
(14) 

ler.     Pressure data on a solid cone in the st. ong interaction re- 

gion have been analyzed by Yasuhara,    and these data are in general 

agreement with the present prediction. This agreement may be fortui- 

tous, however, as the hypersonic viscous interaction problem for a 

slender impermeable cone yields rigorously only a nonsimilar solu- 

tion. 
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VII.  MATCHING THE INVISCID AND VISCOUS FLOW SOLUTIONS 

Consideration of the above solutions and those of Mirels    for 

viscous and inviscid regions show that similar solutions exist both 

in the inviscid and viscous flow regions.  It remains now to match 

uhese solutions to obtain the proper behavior in the strong interac- 

tion region. 

Equations (83) and (85) yield 

r    2 r    2 _  1 

it)     =    Of)   +y-JLT-nem\hCOSa (130) 
k 

where 

e 
Ik    =    Jo      F^G-K'2)  dTlk {ln) 

and 

rf1    2   i 
LJn 

re k      J 
1/2 

a 
k    - 2  (132) 

Perk 

In the P-E-Y regime.^ = T],  a, = a*.   rk = r^    In the G-L regime. 

\ = ^  '  ak = al'   <r„/re)    -* 0'  rk = r
P-     It can be shown that 

* 
a tm c^) 

al    =    -^m (134) 

b,  c,  and d being  the same as defined in Eqs.   (96),   (HO),  and (94), 
respectively. 
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In the P-E-Y regime, Eq. (130) becomes (cos cc =» 1) 

V - 1       1/2 

e 

where 

\ 
I - J  F^G - K'2) clTI (136) 

In the G-L regime, the analogous result is; 

where 

Ye ' 1      rs   * 
c    -   —7-V/d1 (137) 

e 

* 
^e 

1*    =    J     F^G - K'2)  dTl* (138) 

If 

e 

then Eq. (135) becomes approximately 

Ye''    rr/_ a*\ "JJi? *-i) »"<» Y   e!V d V* * 
e a 

which is formally identical to Eq. (137).  Thus Eq. (139) provides a 

numerical estimate of the size of the body to which the G-L regime ap- 

proximation applies; that is, 
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Y - 1 

7-Vd1 ("D b « -Sr-"./11 
e 

It also shows that the G-L regime may be treated in a manner similar 

to the general scheme of the P-E-Y regime.  Therefore, only the P-E-Y 

regime will be examined in this section.  Equation (135) may be written 

r2 

i - (tr 1 + Q 
r w 

(142) 

where 

VBece " 2i/3 IsA-x-j (y-n)   /»„(A-N)    ^(V) 

and 
(143) 

  R 

JK 00 00 
(144) 

where x is the hypersonic viscous interaction parameter.  In the pre- 

sciit problem, b/L   is nondimensional.  In terms of this representa- 

üion, Eq. (139) becomes Q » 1, which would be the condition for the 

G-L regime approximation.  Values of A and 9 to be used in Eq. (143) 

are given in the Appendix.  From Eq. (92), one obtains 

P v r i // 
www m Q      K(0) b_ (l\ '* 
p„u„r_ "   ' TTTT? 1 9 W/ (145) e e e M 

e 

It can be further shown that 

- cwBanuanM    j 
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•e L1/4 » fi i 9 K(ü) i \ 
M
2
' 

Define 

e 
Inv "  1/4. (147) 

L  6 
o 

then 

e 
" _ /T-r-TT /'i  4  n K(0)  1 

2^ (148) inv       w V1  3 i + Q i      o 
M 
e 

For very slender bodies of revolution, M = 0(M ); thus, neglecting 
0(1/Mp terms, 

s 
6 -     -    /i -r w (149) 
inv 

provided K(0)/I - 0(1), Equation (149) applies when the effect of the 

p v r /p u r term is negligible and is of 0(1/Mj. w w w e e e        o o e 
Tne expression for Q in Eq. (143) contains e; thus, 

n - 2 
(M e)(M €.  ) (150) N » /v » inv' 

where 

(i5i> 
Tnese expressions can be introduced into Eq. (149) to yield 
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inv M    inv 
(30 

Thus e can be determined and the hypersonic viscous interaction prob- 

lem is solved. To compute the induced pressure due to viscous inter- 

action, we define 

inv    1 + H (153) 

■1/2 P.   « d.  > "■ (154) rLnv     inv v  * 

The surface pressure on the body of revolution in an inviscid hyper- 

sonic flow is p. . The induced pressure rise is due to viscous in- 

teraction 

Ap = p - p.   = (d - d.  )x"1/2 re  rinv    ^    inv A 

^ P. (155) inv N  ' 

Therefore 

^Ji 

K3/2(^)' ^/FTTA/S (156) 
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VIII. CONCLUSIONS 

We have obtained a similar solution for the case of a hypersonic 

laminar boundary layer on an axipynmetric body. The strong interac- 

tion between the boundary layer and the shock wave has been considered, 

and the analysis includes mass transfer from the surface. In the vis- 

cous flow regime, the boundary layer equations were transformed to a 

set of ordinary differential equations employing appropriate similarity 

variables. The inviscid region was treated using the well-known simi- 

larity transformation for the small-disturbance equations. These so- 

lutions were matched at the interface between the two regions, requir- 

ing that the pressure and normal velocity be continuous. The matching 

procedure }   'Ided an analytical expression for the surface pressure 

and a similarity law for the normal velocity at the wall. 

We have derived a set of analytic expressions that gives the re- 

lationship among the induced pressure at the wall, normal injection 

velocity at the wall, and other important wall variables, in terras of 

the parameters r.hit describe the strong interaction flow. 

A transformation appropriate to both the P-E-Y regime and the G-L 

regime has been derived from Eqs. (10) and (11). This transformation 

leads to the general set of equations, which can then be applied to 

the appropriate regime. 

Within the restrictions indicated in the present study, similar 

solutions have been obtained for the case of a thick boundary layer 

on a very slender body of revolution. However, when the boundary lay- 

er thickness and the characteristic body dimension are of the same or- 
(2) 

der of magnitude, it was shown, in agreement with Yashuara's   ear- 

lier conclusions, that rigorous similarity is possible only for three- 

quarter-power bodies. 

For an axisymmetric body, the similarity condition for the normal 

velocity at the wall follows a (pvr) law rather than the well-known 

(pv) law in the two-dimensional case. 

The restrictive nature of the similar solutions is adequately il- 

lustrated in the present study. In physical problems of interest, it 

may be necessary to deal with more complicated situations than those 
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alloved b" similar solutions. We have seen in Section VI that in hy- 

personic viscous interaction problems, similar solution may be appli- 

cable only In the outer viscous flow region and may not be applicable 

in the inner viscous flow region (cf. Eq. (124d)). In such cases, we 

strictly must obtain nonsimilar solutions of Eqs. (38) to (40), under 

the boundary conditions in Eqs. (25) to (29).  The scheme of calcula- 

tions used in Refs. 19 and 20 may be adopted for this purpose. In the 

present Memorandum, the surface condition in Eq. (127) io adopted to 

obtain "approximate" similar solutions of the G-L regime. Alterna- 

tively, for the G-L regime, the viscous flow region may be dealt with 

by a composite layer approach in order that all the physical boundary 

conditions are rigorously satisfied.  Stewartson    has recently 

treated the hypersonic slender cone problems by this composite viscous 

layer representation. 
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Appendlx 

VALUES OF A AND 6 

The similarity solutions for inviscid hypersonic flow over slen- 

dei power-law bodies have been computed by Mirels,-     In terras of 

Mirel's data for axisymmetric three-quarter-power law bodies, we have 

Y e \ FOy 

1.4 .875 .696 

1.67 .819 .634 

These values of Tu and F(T, ) are related to 6 and A by the following 
b      b o 

formulas: 

eo = T'b 

2n-I      , Ye     1  Ye 

e e       o 

where 

n 

ay. 
e__ > o 

n - 1 + nY 
e 

3 
4 
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